
TCP Adaptation for MPI on Long-and-Fat Networks

Motohiko Matsuda, Tomohiro Kudoh, Yuetsu Kodama, Ryousei Takano
Grid Technology Research Center

National Institute of Advanced Industrial Science and Technology

Yutaka Ishikawa
University of Tokyo, and

Grid Technology Research Center
National Institute of Advanced Industrial Science and Technology

Abstract

Typical MPI applications work in phases of computa-
tion and communication, and messages are exchanged in
relatively small chunks. This behavior is not optimal for
TCP because TCP is designed only to handle a contigu-
ous flow of messages efficiently. This behavior anomaly is
well-known, but fixes are not integrated into today’s TCP
implementations, even though performance is seriously de-
graded, especially for MPI applications. This paper pro-
poses three improvements in the Linux TCP stack: i.e., pac-
ing at start-up, reducing Retransmit-Timeout time, and TCP
parameter switching at the transition of computation phases
in an MPI application. Evaluation of these improvements
using the NAS Parallel Benchmarks shows that the BT, CG,
IS, and SP benchmarks achieved 10 to 30 percent improve-
ments. On the other hand, the FT and MG benchmarks
showed no improvement because they have the steady com-
munication that TCP assumes, and the LU benchmark be-
came slightly worse because it has very little communica-
tion.

1 Introduction

TCP/IP is widely used as the transport layer of many
MPI communication library implementations for commod-
ity clusters and the Grid environment. However, the traffic
of MPI applications is non-optimal for the TCP protocol
due to the following characteristics.

Typical MPI applications use various communication
patterns, one-to-one, all-to-all, and so on. This causes the
available network bandwidth per node to change quickly.

Part of this research was supported by a grant from the Ministry of
Education, Sports, Culture, Science and Technology (MEXT) of Japan
through the NAREGI (National Research Grid Initiative) Project.

TCP only monitors the network behavior per connection
and does not know the overall traffic patterns of the applica-
tion. If TCP can observe and adjust itself to communication
patterns, TCP will be able to effectively utilize the available
bandwidth. Thus, in this paper, we designed a parameter
switching mechanism in which the network bandwidth pa-
rameter is saved and restored at changes of communication
patterns.

Secondly, MPI applications work in phases of compu-
tation and communication, and thus, the message flow is
not contiguous. TCP is basically designed for a contiguous
flow of messages, and it is not efficient for non-contiguous
communication. When no packets have been sent for a long
period of time in the TCP sense (i.e., longer than 200 msec),
TCP changes to the Slow-Start state. This causes low
bandwidth utilization, especially in long-and-fat networks.
Due to the MPI application characteristics, TCP frequently
changes to the Slow-Start state.

Moreover, the TCP Fast-Retransmit mechanism [1] does
not work well against packet losses of MPI applications
again, because it is designed for a contiguous flow of mes-
sages. When the last packet of a message is lost, which TCP
assumes is a rare case, TCP cannot detect the loss by dupli-
cate acknowledgements. Therefore, the sender has to wait
for the Retransmit-Timeout time, and then recover from the
loss of the packet. In most existing TCP implementations,
such as Linux and Solaris, the Retransmit-Timeout time is
set to hundreds of milliseconds. Therefore, this also causes
low bandwidth utilization.

In order to overcome the issues of a non-contiguous flow
of messages, two improvements have been designed. First,
a pacing mechanism is employed so that TCP can start
steady communication in the congestion avoidance state as
soon as possible. Second, the TCP Retransmit-Timeout
time is reduced to the value calculated based on the round-
trip time. These modifications are made only to the start-up

1

behavior, and no changes are made to the behavior of steady
communication.

The proposed improvements are implemented in the
Linux TCP stack and evaluated. Evaluation using the NAS
Parallel Benchmarks shows that the BT, CG, IS, and SP
benchmarks achieved 10 to 30 percent improvements. The
FT and MG benchmarks showed no improvement because
they have the steady communication that TCP assumes, and
the LU benchmark becomes slightly worse because it has
very little communication.

In the following paper, we first discuss the basic behavior
of TCP and its problems in Section 2, and then present our
three small improvements in Section 3. Then, the results of
our evaluation are shown in Section 4. We briefly mention
related work in Section 5, then we conclude the paper in
Section 6.

2 TCP Problems with MPI Traffic

2.1 Available Bandwidth Parameter Mismatch

TCP monitors basic network parameters, such as latency
and bandwidth, and controls the amount of sending mes-
sages using those parameters [8]. One important parame-
ter is cwnd (congestion window size), which is the maxi-
mum amount of in-flight messages sent during the round-
trip time, and roughly corresponds to the bandwidth-delay
product of the connection.

An MPI application generates differing traffic in various
communication patterns. For example, let us assume an
MPI application which uses both one-to-one and all-to-all
communication primitives, and that it is run on two clus-
ters connected by a wide-area network. In the one-to-one
communication phase, one node can consume the whole
of the bandwidth, and cwnd becomes large. On the other
hand, in the all-to-all collective communication phase, the
participating nodes must share the bandwidth, and cwnd be-
comes small. Starting one-to-one communication immedi-
ately after all-to-all results in a small cwnd and traffic is
reduced. Starting all-to-all communication immediately af-
ter one-to-one results in a large cwnd and congestion oc-
curs. That is, since TCP needs multiple round-trip time to
find out a proper cwnd value, TCP cannot adapt to such a
quick change of the traffic in phase changes from one-to-
one to all-to-all, and vice versa, happening as computation
progresses.

2.2 Frequent Slow-Start

At the beginning of the TCP traffic, the Slow-Start mech-
anism is used to let the sender initially probe for the avail-
able bandwidth to avoid sending at a high rate, which may

overload the network. Slow-Start starts with the initial min-
imum cwnd (one or two packets) and increments cwnd by
one MSS (Maximum Segment Size) at each receipt of an ac-
knowledgement. Slow-Start ends when cwnd reaches a pre-
determined threshold value, ssthresh. In Slow-Start, cwnd
grows at an exponential rate, but it takes a long time to reach
ssthresh in a long-and-fat network, because each step is trig-
gered by a receipt of an acknowledgement. Thus, the effec-
tive bandwidth is very low during Slow-Start [2].

TCP also enters the Slow-Start state after a long quies-
cent state to avoid generating burst traffic in the absence of
ACK-clocking. In other words, a long quiescent state makes
TCP behave as if it started a new connection and it enters the
Slow-Start state, which resets cwnd to the minimum value.
This frequently happens in MPI applications, because they
work in phases of computation and communication.

2.3 Retransmit-Timeout

The receiver observes the sequence numbers of the re-
ceived packets, to reassemble the packets in order. When
there is a hole in the sequence, the receiver recognizes a
packet loss, and notifies the sender by a duplicate acknowl-
edgement. This mechanism is called Fast-Retransmit [1].
The Fast-Retransmit mechanism works only if the traffic
is contiguous. So, when no following packets arrive after
the lost one because the sender has finished its data trans-
mission, Fast-Retransmit cannot recover from the packet
loss, since there is no hole in the sequence. In such a
case, Retransmit-Timeout is detected by the sender pas-
sively, noticing it has not received the acknowledgement
from the receiver [2].

An MPI application exchanges messages in chunks, and
may wait for the end of a chunk. When the last packet
of a chunk is lost, the loss cannot be recovered by the
Fast-Retransmit mechanism, but can be recovered by the
Retransmit-Timeout mechanism. Timeout, however, is rel-
atively long by default (over 200 msec in the Linux imple-
mentation). This causes low utilization of the network.

3 Design and Implementation

3.1 Available Bandwidth Parameter Switching

To avoid cwnd parameter mismatch at a computation
phase change, parameter switching has been designed. For
switching, ssthresh is saved and restored before/after each
communication pattern change. Only the ssthresh value is
changed, but this is satisfactory because ssthresh holds a
good estimation of the bandwidth-delay product before con-
gestion. cwnd is rapidly changing, but ssthresh is stable.
ssthresh is held in the TCP control structure of each con-
nection, and saving and restoring it is easy.

2

MPI defines a set of collective communication primi-
tives, and parameter switching is invoked at the start and the
end of collective communications. At the start of a collec-
tive communication, a ssthresh value for the point-to-point
communication is saved and one for the collective commu-
nication is restored. At the end of a collective communica-
tion, the values are swapped in reverse. Some of the col-
lective communication primitives, such as barrier, which do
not share the bandwidth, are not classified as the collectives.

In our implementation, TCP is forced to the Slow-Start
state in addition to setting ssthresh in parameter switching.
When TCP moves to the Slow-Start state, the pacing func-
tion described next is activated, and communication begins
at a rate specified by ssthresh. This makes the implementa-
tion very simple in that it just calls the tcp cwnd restart()
procedure, after setting ssthresh in Linux.

3.2 Pacing at Start-up

To avoid the performance degradation of Slow-Start, the
pacing mechanism is employed at the Slow-Start state. The
pacing mechanism is used to pace outgoing packets without
depending on ACK-clocking [16].

The target rate for pacing is calculated by RTT/ssthresh.
Thus, the target bandwidth is (ssthresh∗MSS)/RTT, (where
MSS is Maximum Segment Size). In Linux, cwnd and
ssthresh are counted using the number of packets, instead
of bytes as specified in the RFC [14]. As stated before,
ssthresh holds a good estimation of the bandwidth-delay
product, and it is suitable for the target rate.

Pacing is started when the TCP stack notices it has en-
tered the Slow-Start state. Pacing is started when the fol-
lowing condition holds:

no in-flight packets
and

cwnd < ssthresh

A hook function is inserted in the TCP stack so that the
condition is checked at sending of each packet in the hook
function.

A very fast timer of 10 µsec is used to generate a clock
for sending a packet. At each timer interrupt, the target rate
is checked and a decision is made whether or not to send
a packet. Pacing is stopped immediately upon receiving
an acknowledgement. When pacing for all connections is
stopped, the fast timer is also stopped. That is, the pacing is
only activated during a short period of start-up of commu-
nication, and its overhead is small.

The timer should be fine enough to suppress burst traf-
fic, and not to overflow a router buffer. A cycle of 10 µsec
is fine enough because an MTU (Maximum Transfer Unit)
size packet is sent in 12 µsec for 1 Gpbs Ethernet. A cycle
of 10 µsec is also fine enough for 10 Gbps, where pacing

can be performed at a unit of ten packets. Thus, the timer
value of 10 µsec was chosen considering 10 Gbps networks
as well as 1 Gbps networks.

The IA32 systems are equipped with APIC and HPET
timers which both have finer granularity than 1 µsec. In
this experiment, the APIC Timer is used because it is easier
to use. Although the Linux-2.6 kernel includes the support
code for both timers, we did not use them, but rewrote the
interrupt vectors directly instead, because the full timer fa-
cility is not needed.

3.3 Reducing Retransmit-Timeout Time

The Retransmit-Timeout time (RTO) is specified in the
RFC [14] as:

RTO = SRTT + 4 ∗ RTTVAR

where, SRTT is Smoothed Round-Trip Time and RTTVAR
is Round-Trip Time Variation, and both SRTT and
RTTVAR are sampled and measured in the TCP stack.

Although the RFC specifies the RTO calculation, the
RFC also defines the minimum value of RTO as 1 second
(RTO should be rounded-up to 1 second when RTO is less
than 1 second). Linux TCP uses a slightly different defini-
tion, that is, the minimum of 4∗RTTVAR is set to 200 msec.
Thus, RTO is approximately RTT + 200 msec in Linux.

To reduce the pause in transmission when waiting for
Retransmit-Timeout, the Retransmit-Timeout time is short-
ened. In reducing Retransmit-Timeout time, RTTVAR is set
to the calculated value using the definition from the RFC,
without rounding up the minimum value to 200 msec.

The RFC uses such a large minimum RTO, because old
TCP implementations use a coarse timer of hundreds of
milliseconds for processing jobs, such as delayed acknowl-
edgements. This means that a small Retransmit-Timeout
value causes retransmission of packets not actually lost. Re-
cently, timers have become relatively finer at a millisecond
level, and the retransmit algorithm has also been improved
to be robust for a few extraneous retransmissions. In addi-
tion, retransmitting a few packets is no longer a problem for
a Gbps class high-bandwidth environment.

4 Evaluation

4.1 Experimental Setting

In order to evaluate the proposed improvements, two PC-
based clusters were connected in a WAN-emulated environ-
ment as shown in Figure 1. Each cluster consists of 8 nodes.
Table 1 shows the specifications of the PCs and the network
switch.

3

.

.

.
.
.

.

Switch Switch

PC

PC

PC PC

PC

PC

PCPC

8 PCs8 PCs

WAN Emulation

Bandwidth=500Mbps
Delay=10msec

GtrcNET−1

Figure 1. Experimental Setting

Table 1. PC Cluster Specifications

Node PC
CPU Pentium4 2.4C (2.4 GHz)
Motherboard Intel D865GLC
Memory 512KB DDR400
NIC Intel 82547EI (on-board CSA)
OS Fedora Core 2 (Linux-2.6.9-1.6 FC2)

Switch
CISCO Catalyst 3750G-24T

The WAN emulator is GtrcNET-1 (formerly named
GNET-1) [10], which is an FPGA-based configurable net-
work testbed which can precisely control the traffic. The
WAN emulator emulates a wide-area network connection:
inserting delay, limiting bandwidth, and emulating router
behavior. It also enables observation of the traffic with high-
precision without affecting the observed traffic. The router
emulation performs drop-tail buffer control, which discards
packets when the router buffer overflows.

The settings for the WAN emulation are shown below:

Delay 10 msec
Bottleneck 500 Mbps

Router buffer 128 KB (drop-tail)

The delay of 10 msec was chosen as a realistic upper
limit for MPI applications. We plan to run MPI applica-
tions in a wide-area network without modifying the code
developed for PC clusters. Preliminary benchmark evalua-
tion in a wide-area network emulation environment revealed
that the performance does not scale for delay larger than
10 msec [11].

WAN emulation is disabled in some experiments, and
it is so stated in the results. In that case, the setting is an
ordinary PC cluster, and the emulation settings are: 0 msec
delay, 1 Gpbs bottleneck, and 16 MB router buffer (which
never overflows in the experiment).

GtrcNET-1 observes the traffic at 1 msec intervals, that
is an average of 1 msec for each 1 msec. Observed traffic is
from a cluster with lower ranks (node numbers) to the other
cluster with higher ranks.

The TCP implementation is the default TCP of Linux-
2.6.9, based on New-Reno [1, 4], using BIC-TCP [17] for
the congestion avoidance algorithm. The MPI library is
YAMPII [7], which is an MPI implementation on PC clus-
ters, and is a base for GridMPI [5] for wide-area network
communication. The MPI library uses plain sockets and ea-
gerly sends messages to make it efficient in a large-latency
environment. The compiler used is GCC (version 3.3.3) for
both C and Fortran, and the optimization is -O4 for all tests.

In the experiment, a socket option, NODELAY, is set.
NODELAY disables the Nagle algorithm which delays a
send to merge small packets into one. Normally, MPI li-
braries disable the Nagle algorithm. The size of a socket
buffer is set to 20 MB, which is enough for the bandwidth-
delay product of the experiment environment, the value nec-
essary to fill the network capacity.

While standard TCP sets ssthresh to infinity immedi-
ately after establishment of a connection, our implementa-
tion uses a predetermined value for pacing. In the exper-
iment, an ad hoc value of 250 Mbps is used as the initial
target rate because the bottleneck is known in advance as
500 Mbps.

4.2 Impact of Parameter Switching

Figure 2 shows the effect of parameter switching. One-
to-one communication is started at time 0, just after collec-
tive communication. 1 The X-axis is time (sec), and the
Y-axis is the bandwidth in 1 msec samplings. Traffic is lim-
ited to 60 to 70 MB/s, because the WAN emulator limits the
bottleneck bandwidth to 500 Mbps.

The graph on the left is the non-switched case, where
one-to-one is started at time 0, without restoring the ssthresh
parameter. The graph on the right is the parameter switched
case, where one-to-one is started at time 0, after restoring
the parameter. The restored ssthresh is the one saved after
the previous one-to-one communication. The graph on the
right apparently shows the traffic starts with a stable state,
while the graph on the left shows the bandwidth gradually
increases following the application of the congestion avoid-
ance algorithm. Note that the congestion avoidance algo-
rithm is BIC-TCP [17] and the curve is not linear. The
results sometimes show larger traffic than the bottleneck

1Collective communication here is a modified version of MPI Alltoall,
which only performs communication passing through a bottleneck
link. This modification makes the experiment generate stable results.
MPI Alltoall is heavily dependent on the timing because MPI Alltoall
includes intra-cluster traffic, and the amount of traffic passing through the
bottleneck varies greatly as timing changes.

4

Without Parameter Switching

 0

 20

 40

 60

 80

 100

 120

 0 1 2 3 4 5

B
an

dw
id

th
 (

M
B

/s
)

Time (sec)

With Parameter Switching

 0

 20

 40

 60

 80

 100

 120

 0 1 2 3 4 5

B
an

dw
id

th
 (

M
B

/s
)

Time (sec)

Figure 2. Effect of parameter switching

Without Pacing

 0

 20

 40

 60

 80

 100

 120

 0 100 200 300 400 500 600

B
an

dw
id

th
 (

M
B

/s
)

Time (msec)

With Pacing

 0

 20

 40

 60

 80

 100

 120

 0 100 200 300 400 500 600

B
an

dw
id

th
 (

M
B

/s
)

Time (msec)

Figure 3. Effect of pacing at start-up

link. This is because the traffic is observed at the input of
GtrcNET-1.

In the experiment, reducing Retransmit-Timeout time is
applied for all connections, including intra-cluster commu-
nication. This is because a large RTO value also affects
intra-cluster communication, as previously stated. Pacing
at start-up is also enabled for all connections, although it
has very little effect because the latency inside a cluster is
short (some 10 µsec).

The data size of one-to-one communication is 50 MB. At
the start of communication (time=0), ssthresh values were
49 and 582 for the non-switched case (left graph) and the
switched case (right graph), respectively.

4.3 Impact of Pacing at Start-up

Figure 3 shows the effect of pacing at start-up. The
graphs show the traffic in intermittent communication,
where one-to-one data transfer is repeated with pauses. The
experiment performed repeatedly sending chunks of 10 MB
data at 2 second intervals. Each graph shows the traffic of
one chunk. The X-axis is time (msec), and the Y-axis is the
bandwidth in 1 msec samplings.

Figure 3 on the left-hand side (without pacing) shows

that the traffic gradually increases for each round-trip time
(20 msec) with Slow-Start. It is apparent that the available
bandwidth is not utilized. Figure 3 on the right-hand side
shows the case with pacing. The bandwidth is high from
the beginning.

4.4 Impact of Reducing Retransmit-Timeout
Time

Figure 4 shows the bandwidth of MPI Alltoall, vary-
ing the message size. The bandwidth is the byte count
of messages divided by the communication time. The
curve labeled with Modified TCP is the case with reducing
Retransmit-Timeout time, and it shows good improvement
from standard TCP. Note that no delay and no limiting of the
bandwidth at the bottleneck was applied in this experiment.
The setting was chosen to show that the effect is indepen-
dent of the behavior of the router emulation. It means that
reducing the Retransmit-Timeout time is effective in a LAN
environment as well as in a WAN environment.

The dotted line in the graph at 29 MB/s shows the ideal
bandwidth in the experimental setting, where eight streams
share the 1 Gbps bottleneck link.

Figure 5 shows the traffic at a data size of 32 KB. Com-

5

All-to-all Bandwidth

 0

 5

 10

 15

 20

 25

 30

10 32 128 512 1024

B
an

dw
id

th
 (

M
B

/s
)

Message Size (KB)

Standard TCP
Modified TCP

Figure 4. Effect of reducing Retransmit-Timeout time

Without Reducing Retransmit-Timeout time

 0

 20

 40

 60

 80

 100

 120

 0 500 1000 1500 2000

B
an

dw
id

th
 (

M
B

/s
)

Time (msec)

With Reducing Retransmit-Timeout time

 0

 20

 40

 60

 80

 100

 120

 0 500 1000 1500 2000

B
an

dw
id

th
 (

M
B

/s
)

Time (msec)

Figure 5. All-to-all Traffic (data size 32 KB)

paring the two graphs shows an apparent effect of the mod-
ification. Although MPI Alltoall is called continuously,
large gaps occur in the left graph. All-to-all communica-
tion does not progress until each node receives the tail of
a message, which causes Retransmit-Timeout to happen.
The gaps are over 200 msec, because Retransmit-Timeout
is over 200 msec in the Linux TCP implementation. Note
that routers and switches tend to discard the tail of a mes-
sage which causes Retransmit-Timeout in high probability.

4.5 NPB Benchmark Results

Next, the effect of the modifications is evaluated using
application benchmarks to show the effect in real applica-
tions. The benchmarks used are the NAS Parallel Bench-
marks (NPB 2.3). The data set size is CLASS=B, and
the number of processes is NPROCS=16. Measurement
is taken from the best of three runs, because variance of
around 10 percent was observed for the standard TCP case.

Figure 6 shows the relative performance normalized to
standard TCP. Table 2 shows the absolute values. In both
the graph and the table, STD is standard TCP, and PCE is

Table 2. NPB absolute value (Mop/s total)

STD ALL RTO+PCE PCE
BT 2835.48 3571.02 3887.74 3520.48
CG 293.86 371.99 372.48 325.94
EP 82.23 82.23 82.22 82.22
FT 1168.01 1182.69 1191.58 1182.74
IS 23.61 26.25 27.60 26.15
LU 4143.90 3781.36 3535.71 4198.00
MG 1130.55 1107.41 1112.02 1160.35
SP 995.72 1323.11 1368.42 1243.75

pacing at start-up. RTO+PCE is the combination of pacing
at start-up and reducing Retransmit-Timeout time. ALL is
all combinations of the modifications, including parameter
switching.

The results of reducing Retransmit-Timeout time alone
and parameter switching alone are omitted, because some
modifications depend on others. Reducing Retransmit-
Timeout time causes frequent Slow-Start as a side-effect
and it always degrades performance without pacing. Also,

6

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

BT CG FT IS LU MG SP

R
el

at
iv

e
P

er
fo

rm
an

ce

STD
ALL

RTO+PCE
PCE

Figure 6. NPB performance comparison

the implementation of parameter switching depends on pac-
ing.

BT, CG, IS, and SP show improvement from 10 to 30
percent, FT and MG show no improvement, and LU shows
a degradation in performance. The traffic samples from the
benchmarks are shown in the Appendix.

Examining the details of the traffic, the BT benchmark
has a computation phase longer than 200 msec, which
causes Slow-Start. Thus, the modification has a large effect.
The CG benchmark has small bursts in traffic at small inter-
vals, and some burst traffic seems to cause packet losses and
congestion, which causes Slow-Start at some point in time.
The FT benchmark has steady traffic and thus gained no ef-
fect. The IS benchmark has a computation phase at the start
which causes Slow-Start, thus the modification has an ef-
fect. The LU benchmark has steady and very little traffic.
Retransmit-Timeout and packet loss do not occur, so stan-
dard TCP performs well. The MG benchmark has small
bursts, but they are smaller than the ones in the CG bench-
mark. Standard TCP works well without packet losses, thus,
the modification has no effect. The SP benchmark starts
with Slow-Start, so the modification has a large effect.

4.6 Overhead of Fast Timer

Interrupting at 10 µsec, a program with an empty loop
slowed down by 1.8 to 2.0 percent. The timer interrupt is
used only during the pacing, which only lasts for a round-
trip time. Therefore, the performance degradation caused
by the timer interrupt may be small.

5 Related Work

Modifications to the start-up behavior have been the sub-
ject of many proposals in the context of adaptation to WEB

traffic [6]. Aron, et. al [2], discussed reducing Retransmit-
Timeout time and pacing at start-up. This work shows
that using a relatively fine timer (10 msec) has better ef-
fect on Retransmit-Timeout time, compared to the old timer
(200 msec or 500 msec) used in the old BSD Unix imple-
mentations. Pacing with a 10 msec timer also shows a bet-
ter effect in the simulation of a 128 Mbps bandwidth and
5 msec delay network. Our work adapts these results to a
more recent environment, where using the finer timer does
not reduce the Retransmit-Timeout time any more, and thus
it needs to explicitly cut the time. And also pacing with a
10 msec timer is not effective in Gbps class networks, and
so it is necessary to use a much faster timer.

For APIC and HPET fast timers on the IA32 systems,
Oberle, et. al, discussed the APIC timer and pacing ex-
periments of UDP packets at µsec precision in [12].
Kamezawa, et. al, discussed fast timers and burst avoidance,
and experimented using trans-pacific network communica-
tion [9]. In [15], we discussed a very precise pacing mech-
anism implemented totally in software, where the timing is
generated by the network interface at a packet level.

Papers [2, 13, 16] discussed determination of the pacing
target, measurement of precise round-trip time, and a de-
caying factor affecting the ssthresh parameter due to time.

Ensemble-TCP [3] discussed the sharing of TCP param-
eters by connections to the same target host, taking into ac-
count that these connections may share the same network
path and will share the behavior. Under that assumption,
this work proposes to share TCP parameters among con-
nections, which improves the performance. Our approach
is roughly the opposite, that is, even a single connection
has differing characteristics with regard to phases of com-
putation and communication, and switching multiple sets of
parameters improves the performance.

7

6 Conclusion

By small modifications to the intermittent behavior of
TCP, it has been shown that these modifications improve
the performance of communication in an MPI work load.
Even though the modifications are limited to the start-up
and no modifications are made to the congestion avoidance
phase, four of the NPB benchmarks are improved by 10 to
30 percent.

The modifications have the following effects: reducing
Retransmit-Timeout time reduces a long pause in recov-
ery at congestion, pacing at start-up avoids a bad utilization
of the bandwidth due to Slow-Start, and parameter switch-
ing improves estimation of available bandwidth at phase
changes of computation.

TCP modification should consider the fairness to other
streams. The modifications in this paper are just for the
behavior at the start-up (within a round-trip time) and no
change are made in the congestion avoidance phase where
the fairness is an important issue. Thus, the fairness of the
modified TCP follows that of the base TCP. In addition, the
modifications suppress burst traffic and so they should re-
duce influence on other streams.

References

[1] M. Allman, V. Paxson, and W. Stevens. TCP Conges-
tion Control. RFC 2581, 1999.

[2] M. Aron and P. Durschel. TCP: Improving Startup
Dynamics by Adaptive Timers and Congestion Con-
trol. Tech. Rep. TR98-318, Rice Univ., 1998.

[3] L. Eggert, J. Heidemann, and J. Touch. Effects of
Ensemble-TCP. ACM Computer Communication Re-
view, 30(1), 2000.

[4] S. Floyd and T. Henderson. The NewReno Modifica-
tion to TCP’s Fast Recovery Algorithm. RFC 2582,
1999.

[5] GridMPI Home Page. http://www.gridmpi.org

[6] A. S. Hughes, J. Touch, J. Heidemann. Issues in TCP
Slow-Start Restart After Idle. Expired Internet Draft,
draft-hughes-restart-00.txt, 2001.

[7] Y. Ishikawa. YAMPII Official Home Page.
http://www.il.is.s.u-tokyo.ac.jp/yampii

[8] V. Jacobson. Congestion Avoidance and Control.
Proc. SIGCOMM’88, in ACM Computer Communi-
cation Review, 18(4):314-329, 1988.

[9] H. Kamezawa, M. Nakamura, J. Tamatsukuri,
N. Aoshima, M. Inaba, K. Hiraki, J. Shitami, A. Jin-
zaki, R. Kurusu, M. Sakamoto, and Y. Ikuta. Inter-
layer Coordination for Parallel TCP Streams on Long
Fat Pipe Networks. SC2004, 2004.

[10] Y. Kodama, T. Kudoh, R. Takano, H. Sato, O. Tatebe,
and S. Sekiguchi. GNET-1: Gigabit Ethernet Net-
work Testbed. IEEE Intl. Conf. on Cluster Computing
(Cluster2004), 2004.

[11] M. Matsuda, Y. Ishikawa, and T. Kudoh. Evaluation
of MPI Implementations on Grid-connected Clusters
using an Emulated WAN Environment. CCGrid2003,
2003.

[12] V. Oberle and U. Walter. Micro-second Precision
Timer Support for the Linux Kernel. IBM Linux Chal-
lenge, 2001.
http://www.tm.uka.de/itm/publications.php?id=61

[13] V. N. Padmanabhan and R. H. Katz. TCP Fast Start:
A Technique for Speeding Up Web Transfers. Proc.
IEEE GLOBECOM Internet Mini-Conference, 1998.

[14] V. Paxson and M. Allman. Computing TCP’s Retrans-
mission Timer. RFC 2988, 2000.

[15] R. Takano, T. Kudoh, Y. Kodama, M. Matsuda,
H. Tezuka, and Y. Ishikawa. Design and Evaluation of
Precise Software Pacing Mechanisms for Fast Long-
Distance Networks. 3rd Intl. Workshop on Protocols
for Fast Long-Distance Networks (PFLDnet05), 2005.

[16] V. Visweswaraiah and J. Heidemann. Improving
Restart of Idle TCP Connections. Tech. Rep. 97-661,
Univ. of Southern California, 1997.

[17] L. Xu, K. Harfoush, and I. Rhee. Binary Increase Con-
gestion Control for Fast Long-Distance Networks. IN-
FOCOM 2004.

8

A NPB Traffic Samples

This appendix views the traffic samples of the NPB benchmarks. The graphs show the samples of one loop from the
benchmarks. The upper graph is standard TCP, and the lower one is modified TCP. The X-axis is time (sec) and the Y-axis
is bandwidth (Mbps). Comparing the two well reveals the behavior of TCP. Note that the graphs show the sum of the traffic
from multiple streams, since the traffic is observed at the bottleneck between clusters. Also note that the start of a loop
deviates sightly because of delivery of a trigger to the network emulator.

 0
 200
 400
 600
 800

 1000

 0 0.2 0.4 0.6 0.8 1

(M
bp

s)

 0
 200
 400
 600
 800

 1000

 0 0.2 0.4 0.6 0.8 1

(M
bp

s)

Traffic samples of BT

In BT, there is a pause in communication around 0.3 second for standard TCP. That causes the following communication
starts with Slow-Start.

 0
 200
 400
 600
 800

 1000

 0 0.5 1 1.5 2

(M
bp

s)

 0
 200
 400
 600
 800

 1000

 0 0.5 1 1.5 2

(M
bp

s)

Traffic samples of CG

In CG, disruption occurs in a short period. CG repeats a short communication and ACK-clocking does not work well.
Some burst traffic is observed which causes losses of packets. Examining the graph in detail shows standard TCP starts
Slow-Start at around 0.7 second.

 0
 200
 400
 600
 800

 1000

 0 0.5 1 1.5 2 2.5 3 3.5

(M
bp

s)

 0
 200
 400
 600
 800

 1000

 0 0.5 1 1.5 2 2.5 3 3.5

(M
bp

s)

Traffic samples of FT

In FT, standard TCP and modified TCP show similar behavior.

9

 0
 200
 400
 600
 800

 1000

 0 0.2 0.4 0.6 0.8 1 1.2 1.4

(M
bp

s)

 0
 200
 400
 600
 800

 1000

 0 0.2 0.4 0.6 0.8 1 1.2 1.4

(M
bp

s)

Traffic samples of IS

In IS, there is a pause in communication at the start of a benchmark round, and standard TCP seems to start by Slow-Start
which slows down the performance.

 0
 10
 20
 30
 40
 50

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

(M
bp

s)

 0
 10
 20
 30
 40
 50

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

(M
bp

s)

Traffic samples of LU

In LU, very small communication is maintained. Note that the scale of the Y-axis is 1/20 that of other benchmarks.
Standard TCP works well for this amount of traffic without causing congestion. Modified TCP is slower because it starts
communication by pacing with the target rate which is conservatively lower.

 0
 200
 400
 600
 800

 1000

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

(M
bp

s)

 0
 200
 400
 600
 800

 1000

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

(M
bp

s)

Traffic samples of MG

In MG, traffic is low and bursts are smaller than CG, and standard TCP does not seem to have packet drops. Pacing used
in modified TCP lowers the peaks of the traffic, but the overall behavior is similar.

 0
 200
 400
 600
 800

 1000

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

(M
bp

s)

 0
 200
 400
 600
 800

 1000

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

(M
bp

s)

Traffic samples of SP

In SP, there is a quiescent state at around 0.3 second, and standard TCP enters Slow-Start after that period.

10

