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Abstract— We have been developing a Grid-enabled MPI
communication library called GridMPI, which is designed to
run on multiple clusters connected to a wide-area network.
Some of these clusters may use private IP addresses. Therefore,
some mechanism to enable communication between private IP
address clusters is required. Such a mechanism should be widely
adoptable, and should provide high communication performance.
In this paper, we propose a message relay mechanism to support
private IP address clusters in the manner of the Interoperable
MPI (IMPI) standard. Therefore, any MPI implementations
which follow the IMPI standard can communicate with the
relay. Furthermore, we also propose a trunking method in
which multiple pairs of relay nodes simultaneously communi-
cate between clusters to improve the available communication
bandwidth. While the relay mechanism introduces an one-way
latency of about 25 μsec, the extra overhead is negligible,
since the communication latency through a wide area network
is a few hundred times as large as this. By using trunking,
the inter-cluster communication bandwidth can improve as the
number of trunks increases. We confirmed the effectiveness of
the proposed method by experiments using a 10 Gbps emulated
WAN environment. When relay nodes with 1 Gbps NICs are
used, the performance of most of the NAS Parallel Benchmarks
improved proportional to the number of trunks. Especially, using
8 trunks, FT and IS are 4.4 and 3.4 times faster, respectively,
compared with the single trunk case. The results showed that the
proposed method is effective for running MPI programs over high
bandwidth-delay product networks.

I. INTRODUCTION

With the recent progress in network technology, running

large-scale applications using a set of geographically dis-

tributed computing resources has become practical. Several

Grid-enabled MPI systems, including MPICH-G2 [7], PACX-

MPI [8], StaMPI [9], and MC-MPI [10], have been proposed

for this purpose. Using these systems, users are able to

seamlessly deploy their applications from a small-scale cluster

system at a laboratory to a Grid environment, and process a

very large data set that is too large to run on a single system.

When such a Grid environment is under the control of

several organizations, we can not assume that all the compute

nodes have global IP addresses and can communicate with

each other directly. Some of the clusters may use private IP

addresses and/or firewalls. Therefore, for broad deployment of

Grid-enabled MPI systems, private IP address clusters should

be supported.

User level proxy, virtual private networks (VPNs), and

network address translation (NAT) traversal [14] are possible

methods to enable communication between private IP address

nodes, and proposed MPI systems which support private IP

addresses use at least one of them. Each of these meth-

ods has advantages and disadvantages. A user-level proxy

is portable and easy to implement. In addition, setting of

network parameters for wide-area networks (e.g., rules of

packet filtering, socket buffer size, etc.) can be consolidated

on the proxy node. However, its performance (communication

bandwidth) is lower than that of the others, because an extra

communication between the proxy process and the kernel is

necessary. VPN can tunnel NAT or firewall boxes. However,

all the nodes that participate in communication should have

different IP addresses. TCP NAT traversal techniques have

higher performance, but they are not standardized, and not

always applicable, depending on the behavior of NAT boxes.

We assume an environment in which the inter-cluster band-

width (e.g., 10 Gbps) is higher than the bandwidth of the

network interface (e.g., 1 Gbps) of each cluster node, and the

aggregate bandwidth of nodes in a cluster is higher than the

inter-cluster bandwidth. In such an environment, when there

is only one pair of relay nodes (one at each cluster), the

available bandwidth for inter-cluster communication is limited

by the bandwidth of the network interface of the front-end

node at each cluster. Therefore, the relay node may become the

bottleneck of the performance. For example, when the front-

end node has a Gigabit Ethernet interface, the bandwidth is

limited to 1 Gbps, even if the inter-cluster network bandwidth

is higher. To utilize the inter-cluster bandwidth efficiently,

multiple relay nodes at each cluster should participate in the

communication simultaneously.

We have developed GridMPI [1][2], which complies with

the MPI-1.2 and MPI-2.0 standards. GridMPI is implemented
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using YAMPI [3] for intra-cluster communication, and sup-

ports the Interoperable MPI (IMPI) protocol [4] for inter-

cluster communication over TCP/IP. 1

In this paper, we propose a message relay mechanism to

support private IP address clusters, which is transparent for

MPI processes that communicate using the IMPI protocol. We

present a user level proxy implementation called the IMPI

Relay. We choose a user level proxy approach since it can

be widely deployed, regardless of the configuration of NAT

boxes. Furthermore, to solve the problem of lower bandwidth

of the user level proxy, we will introduce a trunking technique,

which is a connection aggregation (bonding) using multiple

pairs of the IMPI Relays.

In the IMPI protocol, each MPI process is identified by

a pair consisting of a host id and a process id. The IMPI

relay translates the source and destination ids in each packet to

achieve communication between nodes in different private IP

address clusters. The communication between the IMPI relays

and global IP address clusters is subject to the IMPI standard.

Therefore, any MPI implementation which follows the IMPI

standard can communicate with the relay.

The rest of the paper is organized as follows. Section II

describes the design of the IMPI Relay and the proposed

trunking method. The experimental results obtained using a

10 Gbps emulated WAN environment are shown in Section III.

In Section IV, we discuss an optimization of the proposed

method. We briefly mention related work in Section V, and

conclude the paper in Section VI.

II. IMPI RELAY

A. Terminology

The following terms are used in this paper, and they are

based on the terms defined in the IMPI specification.

• Client: An instance of a cluster used in a single IMPI

application. An application may have several clients.

• Proc: A proc is equivalent to an MPI process, and it

is identified by a combination of a Host ID and a

Proc ID. Every proc has exactly one host. A host might

have one or many procs.

• Server: An IMPI Server used to gather and distribute

Host IDs, Proc IDs, and other information among

clients. There is one IMPI Server for an application.

• Agent: A entity in a client, which contacts the IMPI

Server on behalf of all processes of the client.

• Packet: An IMPI message is divided into packets, and

they are sent in sequential order. The header field contains

its source and destination proc, data length, and so on.

Host ID is a system-wide unique host identifier. A host

normally corresponds to a node in a cluster. Typically an

IPv6 address is used for the purpose. 2 Proc ID is a process

identifier which is unique within a host. In the current GridMPI

1The following document describes the implementation status and provides
notes on the use of MPI-2 features. http://www.gridmpi.org/gridmpi-2-x/impl-
status-mpi2.html

2For IPv4 networks, an IPv4-mapped IPv6 address is used.

Fig. 1. Overview of GridMPI and IMPI Relay. IMPI Relay forwards IMPI
command packets between the IMPI Server and the agent, and also forwards
IMPI data packets between clusters.

implementation, a host has one proc, and the host which has

the smallest rank proc acts as an agent.

B. Overview

An overview of GridMPI and IMPI Relay execution steps

is shown in Figure 1. The left rounded-box shows a private

IP address cluster and the right one shows a global IP address

cluster. The IMPI Relay runs on a front-end node, which

has both private and global IP addresses. The private address

is used to communicate with nodes inside the cluster. The

global address is used to communicate with the IMPI Server

and nodes outside the cluster. The IMPI Relay forwards two

types of packets. The first one consists of IMPI command

packets. IMPI command packets are used to exchange client

information between the IMPI Server and an agent, at the

time of initialization (i.e., MPI Init) and finalization (i.e.,

MPI Finalize). From the viewpoint of the IMPI Server,

IMPI Relay acts as an agent of the client. The second one

consists of data packets exchanged among clusters.

The IMPI Relay translates both IMPI Host and

IMPI Proc in each packet on the fly. Any implementation

of the IMPI protocol should work with IMPI Relay. Using

IMPI Relay, from the outside of the cluster, all procs inside

the cluster are seen as a set of procs on the IMPI Relay node.

On the other hand, from the inside, all procs outside the

cluster are seen as a set of procs on the IMPI Relay node.

The execution flow is as follows. 1) IMPI Server is launched

at a globally reachable node by an impi-server com-

mand. The command outputs the IP address/port pair (e.g.,

saddr:sport) which will be used by agents of public IP address

clusters or the IMPI Relays of private IP address clusters to

contact the server. 2) an impi-relay command is issued

at a front-end node in a private IP address cluster to launch

an instance of IMPI Relay. For this command, (saddr:sport)

is provided as a parameter. The command outputs another

IP address/port pair (e.g., raddr:rport), which will be used

by procs inside the cluster to contact the relay. 3a, 3b)

a mpirun command is issued at both clusters, to invoke

MPI processes. For this invocation of MPI processes, at a
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private IP address cluster, the IP address/port pair of the IMPI

Relay of that cluster (raddr:rport) is used as the parameter

of the “-client” option. On the other hand, at a global IP

address cluster, the IP address/port pair of the IMPI Server

(saddr:sport) is used as the parameter.

In the first half of the initialization phase, the agent first

attempts to communicate with the IMPI Server to gather and

distribute the client information. In a private IP address cluster,

the agent establishes connection with the IMPI Relay in the

cluster instead of the IMPI Server, and the agent sends IMPI

command packets to the IMPI Server via the IMPI Relay. The

IMPI Relay dynamically generates host-proc mapping tables,

by snooping the IMPI command packets between the IMPI

Server and the agent. In the second half of the initialization

phase, each host establishes all-to-all connections according

to the client information distributed by the IMPI Server. Then

rank numbers are renumbered to make them globally unique,

because they are only unique in each cluster.

After the initialization phase, the IMPI Relay transfers IMPI

data packets from the internal nodes to the external nodes.

At this time the IMPI Relay replaces the original source and

destination proc fields, according to the host-proc mappings.

C. Host-proc id translation

The IMPI Relay serves as the gateway host of a private IP

address cluster as shown in Figure 2. The dashed-lines show

host-proc id mappings. For a global IP address cluster (i.e.,

cluster 1), one proc is paired with one host. On the other

hand, for a private IP address cluster (i.e., cluster 0), the IMPI

Relay acts as a host, and all procs of the cluster at the other

side are seen to be procs belonging to that host. “src=H0:0” in

each packet indicates that the source Host ID and Proc ID
are H0 and 0, respectively. For example, a packet is sent from

P0 to P2. R replaces the source and destination proc fields

of the packet, and forwards it to H2.

To realize this remapping, the IMPI Relay maintains two

individual mapping tables of host-proc id translation for both

the internal and the external cluster. The global host-proc

mapping tables are identical among IMPI Relays. The private

host-proc mapping tables, by contrast, differ from each other.

From client 1, procs at client 0 are mapped to 2 procs

{P0, P1} of the host RG, where RG is a global IP address

of R. From client 0, procs at client 1 are mapped to 2 procs

{P2, P3} of the host RP , where RP is a private IP address

of R. Note that the IMPI Relay does not preserve the original

host-proc relationship, and flattens one-tier mapping at each

client.

Figure 3 shows the case in which clients on both sides are

private IP address clusters. For example, P0 sends a packet to

P2. The packet is forwarded to H0, R0, R1, and H2. Both

R0 and R1 perform host-proc id translation according to the

respective host-proc mapping tables.

D. Trunking

To improve communication performance, we propose trunk-

ing, a connection aggregation technique using multiple pairs

Fig. 2. IMPI Relay (P-G). IMPI Relay forwards packets, and replaces the
source and destination fields according to the host-proc mapping.

Fig. 3. IMPI Relay (P-P). Each IMPI Relay has a host-proc mapping table,
and host-proc id translation is performed at both R0 and R1.

of the IMPI Relay. Multiple front-end nodes are used for

inter-cluster communication. Trunking can be realized as a

straightforward extension to the host-proc id translation. We

propose two schemes for the mapping, as shown in Figure 4.

This figure shows a trunking implementation using two IMPI

Relays at the private IP address cluster. In both schemes, IMPI

Relays and hosts with global IP addresses establish all-to-all

connections in the manner of IMPI. In scheme#1, packets

are forwarded by an IMPI Relay selected according to the

destination host. On the other hand, in scheme#2, an IMPI

Relay is selected according to the source host. In this paper,

we employ scheme#1, since it can be implemented with less

modification than that required by scheme#2.

In scheme#1, 2 hosts {R0, R1} and 4 procs

{P0, P1, P2, P3} establish all-to-all connections. The

behavior of each proc is the same as that without IMPI Relay.

Each IMPI Relay has an identifier called a relay rank, and
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the IMPI Relay which has the smallest relay rank is called a

leader. Only the leader of IMPI Relays acts as an agent of

the client.

For the external cluster (i.e., client 1), IMPI Relays use a

mapping scheme in which R0 represents 2 procs {P0, P1},
and R1 represents 2 procs {P2, P3}. For the internal cluster

(i.e., client 0), they use a mapping scheme in which R0
represents 2 procs {P4, P5}, and R1 represents 2 procs

{P6, P7}. However, this scheme has an issue such that the

outbound route and inbound route are not the same, but are

asymmetric. For example, the round-trip route between P0 and

P7 is H0 → R1 → H7 → R0 → H0. When R0 forwards a

packet to H0, the source Host ID is replaced from H7 to R1.

Here, although P0 expects that P7 is to be represented by R1,

P0 receives the packet whose source Proc ID is P7 from R0.

In terms of inside the private IP address cluster, this behavior

results in a discrepancy with the IMPI protocol. Hence we

need to slightly modify the GridMPI implementation so as to

relax the validation check to allow the difference between the

source Host ID (i.e., R1) and the actual source IP address

(i.e., R0).

Scheme#2 looks straightforward, and the round-trip route

is symmetric. In addition, it does not establish all-to-all

connections. Therefore, the number of connections inside a

private IP address cluster is smaller than that of scheme#1.

For client 1, IMPI Relays use a mapping scheme in which

R0 represents 2 procs {P0, P1}, and R1 represents 2 procs

{P2, P3}, which are the same as most of those of scheme#1.

On the other hand, for client 0, IMPI Relays use respective

mapping tables, in which R0 and R1 represent the same set

of 4 procs {P4, P5, P6, P7} each other. To provide different

mappings to the IMPI Relays, the IMPI Relays should be

invoked by different agents. Therefore, multiple agents should

be used for one cluster. This results in a drastic extension of the

IMPI protocol in terms of the intra-cluster communication of

the private IP address cluster. Note that for both schemes, inter-

cluster communication follows the IMPI standard. Therefore,

any IMPI standard-based MPI implementation on public IP

address clusters should work with IMPI Relays on private

IP address clusters. To use an IMPI standard-based MPI

implementation other than GridMPI for intra-cluster commu-

nication of private IP address clusters, slight modification of

the implementation may be required.

III. EXPERIMENT

A. Experimental setting

Figure 5 shows the experimental setting, and Table I shows

the specifications of the node PC and the switches.3 Each

cluster consisted of 16 compute nodes and 8 relay nodes.

A compute node has both Gigabit Ethernet and Myrinet-

2000 interfaces. Gigabit Ethernet was used for inter-cluster

communication, and Myrinet/MX was used for intra-cluster

3We used a single S5648 switch at each cluster, each of which was divided
into two by using a VLAN. Figure 5 lacks connections between the bottom
switches (i.e., VLANs) and GtrcNET-10, which are used for ’G-G’ setting.

Trunking scheme#1 Trunking scheme#2

Fig. 4. Trunking using multiple IMPI Relays. Scheme#1 forwards packets
according to the destination host; scheme#2 forwards packets according to
the source host.

Fig. 5. Experimental Setting

communication. A relay node has two Gigabit Ethernet in-

terfaces, with a private IP address is assigned to one of the

interfaces, and a global IP address is assigned to the other.

Two clusters were connected through a 10 Gbps WAN

emulator called GtrcNET-10 [5][6]. GtrcNET-10 consists of

a large-scale Field Programmable Gate Array (FPGA), three

10 Gbps Ethernet XENPAK ports, and three blocks of 1 GB

DDR-SDRAM. The FPGA is a Xilinx XC2VP100, which

includes three 10 Gbps Ethernet MAC and XAUI interfaces.

GtrcNET-10 provides many functions, such as traffic mon-

itoring in microsecond resolution, traffic shaping, and WAN

emulation at 10 Gbps wire speed. In the experiment, GtrcNET-

10 was used to insert delay for both directions, which varied

from 0 msec to 10 msec, one-way.

Some networking parameters of the Linux kernel were

changed from the default value, as shown in Table II, because

default parameters, such as socket buffer sizes, are not ade-

quate for the experiment. In addition, tcp no metrics save
disables reuse of the parameters of the previous connection.

IMPI C DATALEN is the maximum IMPI packet size in

bytes. The default value is 64 KBytes. IMPI uses the ren-

dezvous protocol instead of the eager protocol if the size of

an MPI message is larger than the value of IMPI C DATALEN.

B. Micro benchmarks

1) Latency: Table III shows the one-way latency between

two clusters. Round-trip latency was measured by a ping-pong
program using a 0 byte data message, and divided by two

to get the one-way latency. The labels ’G’ and ’P’ indicate
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TABLE I

PC CLUSTER SPECIFICATIONS

Node PC
CPU Opteron/2.0 GHz dual
Memory 6 GB DDR333
Ethernet Broadcom BCM5704
Myrinet Myricom M3F-PCIXD-2 (MX-1.2.2)
OS SuSE Enterprise Server 9
Kernel Linux 2.6.23
Compiler Intel Compiler 9.1

Switch
Huawei-3Com Quidway S5648 + optional 10 Gbps port
Myricom M3-SW16-8F + M3-SPINE-8F

TABLE II

PARAMETERS

sysctl parameters
net.core.wmem max 2500000
net.core.rmem max 2500000
net.ipv4.tcp rmem 2500000 2500000 2500000
net.ipv4.tcp wmem 2500000 2500000 2500000
net.ipv4.tcp no metrics save 1
Environment variables for GridMPI
YAMPI SOCBUF 65536

IMPI SOCBUF 2500000
IMPI RELAY SOCBUF 2500000

a global IP address cluster and a private IP address cluster,

respectively. The global IP address node communicates with

the cluster at the other side directly, and the private IP address

node communicates via the IMPI Relay. The one-way latency

increases by about 25 μsec per each IMPI Relay.

The IMPI Relay stores an incoming packet in the buffer

and forwards it. Therefore, the extra latency is introduced

according to the size and the number of the packet. The one-

way latency increases by (NP + NR)T , where NP is the

number of packets within a message, NR is the number of

IMPI Relays, and T is the transmission time of a packet. When

the packet size is set to 64 KBytes, T becomes 512 μsec at

gigabit wire speed.

2) Point-to-point communication performance: Figure 6

shows the point-to-point communication bandwidth between

two clusters. The bandwidths of both ’P-G’ and ’P-P’ are lower

than those of ’G-G’ with small messages, because the latency

increases due to the overhead of the IMPI Relay, as shown

in Table III. When the message size is larger than 4 KBytes,

the results of all cases are almost the same. The bandwidths

drop at 256 KBytes, since the IMPI communication protocol

changes from the eager protocol to the rendezvous proto-

col at this point. The rendezvous protocol yields the extra

communication latency, and the performance degrades as the

delay increases. Using the IMPI Relay during the rendezvous

protocol, the bandwidth decreases NP /(NP + NR) times

compared with ’G-G’. Therefore, the overhead of the IMPI

Relay relatively decreases as the message size increases. For

example, the degradation ratio becomes 2/3 with 256 KBytes

of packet and ’P-P’. The experimental result corresponds

TABLE III

ONE-WAY LATENCY BETWEEN TWO CLUSTERS

G-G P-G P-P
latency (μsec) 29.8 54.45 78.9
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Fig. 6. Point-to-point communication bandwidth between two clusters

approximately to it.

3) All-to-all communication performance: Figure 7 shows

the all-to-all communication execution time with 32 processes

(16 processes for each cluster). All-to-all is a collective op-

eration exchanging data from all processes to all processes.

The performance depends mostly on the bisection bandwidth.

The label ’no relay’ shows the execution time with ’G-G’;

the labels ’N trunk’ show the execution time with ’P-P’ and

trunking N pairs of IMPI Relays.

In the case where the message size is smaller than

1024 Bytes, there is no improvement in performance due

to trunking, since collective operations with message sizes

less than 1024 Bytes use the short algorithm defined in the

IMPI specification. 4 In the short algorithm, a master node

gathers and distributes data from nodes inside the cluster,

and the master node only participates in the inter-cluster

communication. Therefore, the effect of trunking can not be

obtained.

In the case where the message size is larger than 1024 Bytes,

the performance increases as the number of trunks increases.

However, we observed a non-intuitive phenomenon when the

message size ranged from 4096 Bytes to 512 KBytes. In partic-

ular, the performance of ’no relay’ is worst when the message

size is between 4096 Bytes and 32 KBytes. We also observed a

linearly increasing number of packet losses as the message size

increases. However, the number of retransmission timeouts

(RTOs) are 195, 21049, and 2303 when the message sizes

are 1024 Bytes, 4096 Bytes, and 512 KBytes, respectively.

These phenomena can be explained as follows. The ag-

gregate inter-cluster communication traffic (maximum of

16 Gbps) exceeds the physical bandwidth of the inter-cluster

4The cross-over point can be specified by the environment variable
IMPI COLL XSIZE. The default value is 1024 Bytes.
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Fig. 7. All-to-all communication execution time with 32 processes (16
processes for each cluster)

link (10 Gbps). Packets are queued at the switch at the

entry point of the inter-cluster link, and some packets are

discarded. When packets at the tail of a message within an

MPI Alltoall function are dropped, the receiver can not

recognize the loss of packets since there are no successive

packets within the function. Therefore, the sender can not

retransmit the lost packet until it recognizes the loss by an

RTO. Execution of the program is suspended while it is

waiting for the RTO, and thus it can not proceed to the

next iteration. In the Linux TCP implementation, the RTO

is approximately RTT +200 msec. Thus, the communication

stops for 200 msec or longer, and results in low bandwidth uti-

lization. Severe performance degradation was observed when

many RTOs occur. Of course, this point depends on several

parameters, including the number of nodes, the inter-cluster

bandwidth, the delay, and the buffer size of switches.

C. NAS Parallel Benchmarks

We confirmed the effects of the trunking method by running

NAS Parallel Benchmark 3.2, which is a typical high per-

formance computing benchmark program. The problem size

used was class B. The number of processes was 32 for the

CG, EP, FT, IS, LU, and MG benchmarks, and 25 for the BT

and SP benchmarks. In the latter case, compute nodes were

divided into 13 and 12 at each cluster. We disabled use of the

rendezvous protocol by setting IMPI C DATALEN to a very

large value (0x7fffffff). We ran each benchmark three times

and took the highest performance value among the results.

Table IV shows the absolute performance in Mop/s total

with 0 msec delay. We compare the results of ’no relay’ with

those of trunking, where the number of trunks are 1, 2, 4,

and 8. In most of the results, the performance increases in

proportion to the number of trunks. When the number of

trunks increases from 1 to 8, the performance improvement

ratio of each benchmark is as follows. FT and IS perform 4.4

and 3.4 times faster, respectively. These benchmarks require

larger bandwidth than the others, thus trunking significantly

improves the performance. CG, MG, BT and SP perform

TABLE IV

RESULTS OF NPB BENCHMARKS WITH 0 MSEC OF DELAY (MOP/S TOTAL)

CG EP FT IS LU MG
no relay 3998.2 615.3 8205.0 73.8 20317.6 14523.6
1 trunk 1400.4 619.2 1493.2 46.2 18035.2 5755.7
2 trunk 2287.4 616.4 2860.0 82.9 18792.8 8776.1
4 trunk 2660.3 612.6 4575.3 120.4 19177.5 10781.2
8 trunk 2978.8 616.6 6585.6 159.1 19657.3 11884.4

BT SP
no relay 18468.4 7733.5
1 trunk 12498.9 4180.3
2 trunk 13658.7 5080.2
4 trunk 15917.7 6116.7
8 trunk 16873.5 6950.1

2.1, 2.1, 1.3, and 1.7 times faster, respectively. EP and LU

show no significant effect on their performance, because these

benchmarks generate very low traffic and the inter-cluster link

is not fully utilized, even if no trunking is used.

A further distinctive point is that the IS benchmark results

with two or more trunks outperform the ’no relay’ cases. ’2

trunk’, ’4 trunk’, and ’8 trunk’ perform 1.1, 1.6, and 2.2 times

faster, respectively. This can be considered as due to the same

reason described in Section III-B.3, because the IS benchmark

iteratively uses the MPI Alltoallv function with about

128 KBytes of message. Heavy congestion is avoided since

the number of nodes which simultaneously transfer messages

through inter-cluster communication links is limited to the

number of trunks.

Figure 8 shows the relative performance normalized to the

’no relay’ with 0 msec of delay cases. The one-way delay was

changed from 0 msec to 10 msec. In most of the results, the

overhead of the IMPI Relay becomes relatively smaller as the

delay increases, while the IMPI Relay introduces a latency of

about 25 μsec, as shown in Table III. For IS, the results with

the ’8 trunk’ cases always outperform the ’no relay’ cases.

Table V shows the total number of RTOs that occurred in the

IS benchmark with 0 msec and 10 msec of delay. Basically,

the number of RTOs increases linearly as the number of trunks

increases. In the case of ’no relay’ with 0 msec, however, the

number of RTOs is significantly larger than that of the others

and results in a performance degradation. Furthermore, in the

case of ’no relay’ with 10 msec, although the number of RTOs

is smallest, the performance is lower than that of ’4 trunk’

and ’8 trunk’. TCP communication is split by the IMPI Relay,

and the congestion window size quickly grows. Therefore, the

use of IMPI Relay makes the influence of the delay small.

The effect can be considered similar to that with Performance

Enhancing Proxies [15]. For BT, the results with the IMPI

Relay become better than the ’no relay’ cases when the delay

is larger than 8 msec. These results indicate that the proposed

trunking method is efficient for running MPI programs over

high bandwidth-delay product networks.

IV. DISCUSSION

In this paper, we explained IMPI Relay communication

mainly using two clusters, either or both of which is a private
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Fig. 8. Relative performance of NPB benchmarks normalized to the ’no relay’ with 0 msec of delay cases

.

TABLE V

THE TOTAL NUMBER OF TCP RETRANSMIT TIMEOUTS IN THE IS

delay no relay 1 trunk 2 trunk 4 trunk 8 trunk
0 ms 1457 61 59 170 493
10 ms 25 45 76 183 455

IP address cluster. When there are more than two clusters (e.g.,

N clusters), from the viewpoint of nodes inside a private IP

address cluster, the IMPI Relay acts as multiple hosts (e.g.,

N − 1 hosts), each of the hosts represent procs at one of

the external clusters. We decided to employ this scheme since

the number of clients viewed is the same at each client.

However, the hosts represented by an IMPI Relay have the

same Host ID, which might cause a problem if an MPI

implementation other than GridMPI is used for intra-cluster

communication of private IP address clusters.

The proposed trunking method requires clusters to have

multiple front-end nodes. Many private IP address clusters may

have only one front-end node, and the trunking method can

not be used on such a cluster. Preparing multiple front-end

nodes is required to utilize inter-cluster bandwidth which is

larger than the interface bandwidth of a front-end node.

The optimal number of trunks depends on several factors,

including the number of nodes, the problem size, the inter-

cluster bandwidth, the delay, and the communication pattern

of the MPI program to be run. For programs which generate

huge traffic, trunking has a significant impact on performance.

In those cases, the number of trunks should be as large as

possible, as long as the aggregated bandwidth of trunks does

not exceed the inter-cluster network bandwidth. On the other

hand, many programs do not require so much bandwidth when

delay is large, and single or a small amount of trunking

of relays is sufficient in terms of performance. Therefore,

performance with a small number of trunks is comparable to

that of ’no relay’.

We have proposed two schemes of trunking multiple re-

lay connections, and implemented scheme#1. However, both
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schemes have discrepancies with the IMPI specification. IMPI

Relay does not support the dynamic process creation defined in

MPI-2, because the current IMPI specification does not support

it. The IMPI specification should be extended to support the

MPI-2 features, including dynamic process creation, one-sided

communication, and I/O.

V. RELATED WORK

Several MPI systems designed for multiple clusters and

Grid environments, including MPICH-G2 [7], PACX-MPI [8],

StaMPI [9], and MC-MPI [10], have been proposed.

MPICH-G2 does not support private IP address clusters, and

assumes full connectivity among all participating nodes. Other

implementations support private IP address clusters, but they

do not support trunking.

MC-MPI [10] provides a locality-aware connection man-

agement mechanism which forwards messages from processes

which can not communicate with remote processes directly to

a process which can communicate with remote processes. MC-

MPI discovers connectivity among processes automatically.

On the other hand, IMPI Relay requires a static and manual

configuration according to the IMPI specification. However,

IMPI Relay can provide higher inter-cluster communication

performance by trunking.

MPICH-GP [11] extends the MPICH-G2 functionality to

support private IP address clusters. It uses a communication

relay scheme which combines a kernel-level NAT service and

a user-level proxy. Only incoming messages are relayed by a

proxy process, while outgoing messages are forwarded by a

NAT mechanism. MPICH-GP introduces GP GUID into the

MPICH-G protocol to guarantee the system-wide uniqueness

of ids of nodes inside private IP address clusters. On the

other hand, IMPI Relay follows the standardized IMPI pro-

tocol, instead of deploying a proprietary protocol. MPICH-

GX [12], which is a successor project of MPICH-GP, employs

TCP hole-punching to communicate among private IP address

clusters. Although the performance is higher than that of a

user-level proxy, TCP hole-punching is not always usable

depending on the functionality of the NAT boxes used. In [14],

S. Guha and P. Francis report an 88% average success rate of

TCP connection establishment using TCP hole-punching.

MPI/PRO [13] enables use of private IP address clusters

by combining NAT and IMPI Server. However, details of the

implementation are not known.

Communicating over IPv6 is another solution, and some

MPI libraries as well as GridMPI support message passing

over IPv6. However, currently most sites do not allow the

provision of IPv6 connectivity. The deployment of IPv6 for

the high performance computing community is still a pending

issue.

VI. CONCLUSION

We proposed a high performance relay mechanism for MPI

libraries run on multiple private IP address clusters. The

proposed trunking method is one in which multiple relay nodes

at each cluster simultaneously communicate to improve the

available communication bandwidth between clusters. We have

shown the proposed method works with the GridMPI, and

confirmed the efficiency by experiments using an emulated

WAN environment with 10 Gbps bandwidth and a delay

that ranged from 0 to 10 msec. We have shown that most

of the NAS Parallel benchmarks improved in performance

proportional to the number of trunks, since the inter-cluster

communication bandwidth increases due to aggregation of

relay connections. Especially, using 8 trunks, FT and IS per-

form 4.4 and 3.4 times faster compared with the single trunk

case. While the relay mechanism introduces an approximately

25 μsec one-way latency, the overhead is relatively smaller

than the communication latency between clusters connected

to a wide area network. The results have indicated that the

proposed method is effective and efficient for running MPI

programs over high bandwidth-delay product networks.

In this paper, although we have presented a user-level proxy

implementation called IMPI Relay, the proposed trunking

idea is applicable to other solutions for supporting private IP

address clusters. We also addressed the proposition that the

IMPI specification should be extended to support a connection

trunking feature among clusters, as well as the MPI-2 features,

and that is an open issue.
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