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Abstract— In this paper, we propose precise software pacing
mechanisms at end nodes of communication paths. First, we
propose an Inter Packet Gap (IPG) control mechanism, which
inserts gap packets between packets. The gap packets are inserted
by software at the sender node, and no additional hardware is
required. By adjusting the size of the inserted gap packets, the
pacing ratio is precisely controlled. Then, we propose an IPG-
aware packet scheduling mechanism, in order to merge multiple
streams which go through each of different bottleneck links,
where the pacing ratios are appropriately maintained.

These two mechanisms are implemented as a Linux kernel
module, and no kernel re-compilation is required for installation.
The effectiveness of the pacing mechanism using gap packets
is shown by evaluating TCP/IP communication performance in
a wide area network emulation environment. As a result, the
physical bandwidth of the path is almost fully utilized by using
the proposed mechanism.

I. INTRODUCTION

There are two principle issues concerning TCP/IP com-
munication over fast long-distance networks: window size
control and burstiness control. The former is used to control
the amount of transmission in each Round Trip Time (RTT)
period. The latter is used to control the amount of transmission
more precisely during an RTT period.

The window size control schemes focused on fast long-
distance networks have been widely investigated, and many
schemes have been proposed. For example, Additive Increase
Multiplicative Decrease (AIMD) variant algorithms such as
HighSpeed TCP[4], Scalable TCP[6] or BIC-TCP[7] estimate
the available bandwidth and determine the window size based
on the ratio of packet losses. FAST TCP[8] estimates based on
the queuing delay caused by buffering on intermediate routers.

In this paper, we focus on burstiness control. Burstiness
control is an operation intended to adjust the transmission
rate to the available bandwidth (i.e. target rate) in a fine
granularity of time during an RTT period. Effective burstiness
control minimizes the possibility of overflow of the buffers of
intermediate routers, and realizes a low packet loss rate. Most
TCP/IP implementations use ACK-clocking[3] for burstiness
control. However, ACK-clocking does not work properly dur-
ing slow-start at the beginning of a connection, after a packet
loss, or when an idle connection resumes. Pacing[9] is a more
aggressive burstiness control scheme which directly controls

the timing of the transmission of each packet. The packets are
transmitted at the RTT/window size interval based on the
target rate on the sender side. The more precise the pacing is,
the fewer the packet losses expected at intermediate routers,
and the more effectively the physical bandwidth of a network
path can be utilized.

We have shown that pacing can increase the utilization
efficiency of the physical bandwidth of fast long-distance
networks through experiment using trans-pacific networks
during the SC2003 Bandwidth Challenge (BWC)[1]. In this
experiment, we put special hardware called GtrcNET-11 [2]
between switches to pace the traffic. GtrcNET-1 controls the
Inter Packet Gap (IPG). An IPG is a gap2 between sequen-
tially transmitted packets. A larger IPG size will decrease the
effective bandwidth by packet size/(packet size+ IPG). A
part of the network configuration used in the SC2003 BWC3

is shown in Figure 1. We employed six nodes each at Phoenix
and Tokyo. At Phoenix, the six nodes were subdivided into
three groups, and connected to a GbE switch, GtrcNET-1,
then to a 10GbE switch (E600) using trunked GbE links. The
bottleneck link bandwidth is 2.4Gbps (OC-48 POS), and the
RTT is 141ms, on average. In addition, we used HighSpeed
TCP and the maximum socket buffer size is set to 8MB. Figure
2 shows results without pacing and with pacing. In the without
pacing case, the three GbE links generate traffic exceeding the
bottleneck link, and buffer overflow of intermediate routers
results in packet losses. In the with pacing case, on the other
hand, each of the three GbE links generate stable traffic with
87.5MB/s using GtrcNET-1, and no packet losses occur.

When GtrcNET-1 is used, since the pacing is performed
using a hardware clock, extremely precise pacing is realized.
However, the use of such special hardware draws additional
cost, and such equipment is not always available. On the
other hand, some software-based pacing schemes have been
proposed. Such schemes realize pacing at the end computing

1 GtrcNET-1 was formerly called GNET-1.
2 In most GbE NICs, the IPG is set to 12 bytes, in which case the delay

is 96nsec.
3 In addition to the 2.4Gbps APAN/TransPAC link, we used other two

links and achieved a total of 3.78Gbps (97% of the total physical bandwidth)
between US and Japan.



Fig. 1. Trans-pacific file replication experiment using GtrcNET-1 in the
SC2003 Bandwidth Challenge
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Fig. 2. The effect of pacing using GtrcNET-1 on the APAN/TransPAC LA
Link (300MB/s)

nodes using software timers. However, the pacing ratio is not
always precise in these schemes.

In this paper, we propose the design of two mechanisms for
precise software pacing at end computing nodes. The mech-
anisms are: gap packets and IPG-aware packet scheduling.
Gap packets are inserted between successive packets to control
the interval of the transmission time of the packets. An IPG-
aware packet scheduler aggregates the transmission packets of
multiple streams based on the bottleneck links’ bandwidths.
The proposed mechanisms are implemented as a Linux kernel
module. Therefore it can be loaded or unloaded without kernel

re-compilation.
The rest of the paper is organised as follows. Section II

presents the design of precise software pacing mechanisms.
Section III describes the experimental results using a WAN
emulation environment and a performance comparison with
and without pacing. In Section IV, we discuss related work
on TCP burstiness control and software-based pacing schemes.
Section V summarizes the paper.

II. PRECISE SOFTWARE PACING

In order to achieve precise software pacing, two mechanisms
are proposed in this section: (1) Gap packets which precisely
adjust the intervals between packets, and (2) IPG-aware packet
scheduling which coordinates the transmission of packets for
each bottleneck link.

A. Gap Packet: Virtual Inter Packet Gap

The key to realizing precise pacing is controlling the starting
time of the transmission of each packet. Some schemes which
use a software timer to determine the starting time have
been proposed [10][11][13]. However, sometimes these are not
accurate enough to determine a starting time. We propose a
simple yet accurate mechanism to trigger the transmission of
a packet. That is, to insert a dummy packet between the real
packets. We call this dummy packet a gap packet. Figure 3
shows the basic idea of the gap packet. A gap packet produces
a gap between sequentially transmitted real packets. Packets
are sent out from the Interface queue (IFQ) associated with a
network interface card (NIC) one after another by the NIC’s
hardware. Therefore, by registering a gap packet between real
packets in IFQ, transmission of the next packet starts after
sending a gap packet by NIC. By changing the size of a gap
packet, the starting time of the next real packet transmission
can be precisely controlled. For example, to control a half
rate transmission, a gap packet is inserted between every real
packet where the gap packet size is the same as that of the
real packets.

The target rate is estimated by the following equation:

target rate =
cwnd × packet size

RTT
(1)

where cwnd is the congestion window size.
The target rate with gap packets inserted is also defined by

the following equation:

target rate′ = max rate ×
packet size

packet size + gap size
(2)

where max rate is the maximum physical bandwidth of a
NIC and gap size is the number of bytes in the gap packet,
including the Ethernet packet header and hardware IPG.

gap size is calculated as follows, using Equation 1 and 2,
so that target rate = target rate′:

gap size =
max rate × RTT

cwnd
− packet size (3)

A gap packet should not produce any side effects, except
for delaying the starting time of the next packet transmission,



Fig. 3. Gap packet: Virtual Inter Packet Gap

Fig. 4. IPG-aware packet scheduling

and the gap packet should be discarded at the input port of
a switch to which the NIC is connected. An unreachable
packet can not be used as a gap packet, since a switch
floods broadcast packets to all ports when a packet with
an unregistered destination is arrived. Therefore, in order to
realize a gap packet, the IEEE 802.3x PAUSE packet, with a
pause time of zero and the required packet size is employed.
IEEE 802.3x flow control from the NIC can not be used in
this case. However, since today’s PC has enough performance
to receive gigabit rate traffic, this function is rarely used in
reality.

In a current implementation, the maximum gap packet size
is set to 4KB, and so a gap which is larger than 4KB is divided
into multiple gap packets. Furthermore, the maximum gap size
is set to 64KB.

B. IPG-aware Packet Scheduling

The basic idea behind the IPG-aware packet scheduling
mechanism is to schedule packet transmission based on the
required IPG that is calculated based on each bottleneck links’
bandwidth. If a network has a single bottleneck link, the
scheduler only inserts gap packets. However, if the network
has multiple bottleneck links, it is necessary to schedule the
order of packet transmission and the packet interval. For
example, Figure 4 shows two streams whose have the different
bottleneck link merge into a single stream, and the sizes of
gap packets are re-calculated.

Fig. 5. sch ipg QDisc kernel module

C. Implementation

Figure 5 shows an overview of the implementation in the
Linux kernel. Each transmitted packet is queued in the IFQ
associated with the output NIC, after processing of the TCP/IP
protocol stack. The Linux kernel provides multiple queuing
disciplines (QDisc) for the QoS control framework [18]. A
QDisc module consists of the IFQ and the queuing algorithm.
We implement the IPG-aware packet scheduler on this frame-
work, can call it sch ipg. Because sch ipg is implemented
as a loadable kernel module; and it is independent of the NIC,
it is portable and easy to deploy.
sch ipg provides two components: (1) a target rate esti-

mator; and (2) a gap packet injector. The target rate estimator
calculates the pacing target rate from Equation 3, where cwnd
and RTT are retrieved from the data structure of the window
control (i.e. struct tcp opt). The gap packet injector inserts
gap packets based on the target rate, when a dequeue request
is received from the device driver. Here, gap packets are
generated using the skb clone function, in order to reduce
memory copy operations for the packet payload.

Furthermore, in order to adapt a network topology,
sch ipg is implemented as a classfull QDisc[18] which may
have sub-QDiscs for bottleneck links. A sub-QDisc has a
target rate for the associated bottleneck link. sch ipg makes
decisions about how to coordinate among sub-QDiscs based
on these rates, and it inserts gap packets, if necessary.

III. EVALUATION

We present performance results using the proposed precise
software pacing mechanism4 in a WAN emulation environ-
ment.

4 We evaluate only a gap packet mechanism, because an IPG-aware
scheduling mechanism has not been implemented completely.



TABLE I

HOST HARDWARE SPECIFICATIONS

Processor Pentium4 2.8GHz
Mother Board Intel D865GLC
Main Memory 1GB (DDR400)
NIC Intel 82547EI (CSA)

TABLE II

HOST SOFTWARE CONFIGURATION

OS RedHat Linux 9
Kernel Linux 2.4.27 + Web100 2.4.0

TCP Protocols Scalable TCP (included in Web100 2.4.0)
FAST TCP version 20040421

Max Socket Buffer 32MB

A. Experimental Setting

The sender and receiver hosts are connected via GtrcNET-1.
Here, GtrcNET-1 is used not for pacing, but for WAN emu-
lation. GtrcNET-1 is a fully programmable network testbed,
which consists of an FPGA, 4 SRAM blocks and 4 Gigabit
Ethernet ports. Based on the configuration of the FPGA, it
provides functions such as WAN emulation, traffic monitoring,
and traffic shaping at gigabit wire speed. In this experiment,
GtrcNET-1 emulates a single bottleneck link whose bandwidth
and RTT latency are 62.5MB/s and 200ms, respectively. Fur-
ther, GtrcNET-1 emulates TailDrop buffer management.

Table I shows the specifications of the host hardware, and
Table II shows the configuration of the host operating system.
We use desktop class PCs, comprised of an Intel Pentium
4 2.8GHz processor, 1 GB of memory (DDR400), an Intel
D865GLC mother board, and an on-board Intel 82547 GbE
NIC. All PCs are running Redhat Linux 9.0 and the Linux
kernel 2.4.27, with the Web100[16] 2.4.0 patch and Tom
Kelly’s SACK-tag patch[19] applied. The SACK-tag patch
fixes a bug in retransmission processing which retrieve entire
the write queue for every ACK. The Web100 exposes the
statistics inside the TCP stack itself through an enhanced
standard Management Information Base (MIB) for TCP. The
TCP congestion control algorithms are Scalable TCP or FAST
TCP. This configuration also enables WAD IFQ in order to
ignore send stalls at the IFQ, where it has the same effect as
increasing IFQ size (txqueuelen). The maximum socket buffer
size is set to 32MB. From the point of bandwidth distance
product, 32MB is large enough for this experimental setting.

B. Preliminary Validation of Effects of Gap Packets

The proposed mechanism achieves precise pacing by ad-
justing the sizes of gap packets. In order to verify this,
we measured the bandwidth while varying the size of the
gap packet. Figure 6 shows how well this mechanism can
approximate the actual bandwidth to the theoretical bandwidth.
This result shows that it can pace packet transmission at the
target rate precisely.
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Fig. 6. Bandwidth while varying the size of the gap packet

C. Performance in a WAN emulation Environment

We evaluated whether the proposed mechanism can effec-
tively reduce packet losses on fast long-distance networks.
In order to verify this, we measured the bandwidth behav-
ior from both macroscopic and microscopic points of view.
The following results were measured by the iperf[20] over
a period of 5 minutes. Iperf results show TCP throughput.
However, sch ipg estimates the target rate at a data link
layer. Therefore, the overhead of the TCP/IP protocol header
must be considered.

1) Average bandwidth and number of TailDrop packets:
First, we measured the average bandwidth and the number
of packet losses in a bottleneck link router while varying
the TailDrop buffer size, i.e. the size of FIFO before the
bottleneck. Assuming that the TailDrop buffer size is large
enough, the router is robust with respect to bursty traffic.
Tables III and IV show the results using Scalable TCP and
FAST TCP. Tables III (a) and IV (a) show the results without
pacing. In this case, packets are frequently lost, and thus, the
bandwidth is low. Tables III (b) and IV (b), in contrast, show
the results with pacing, in which case zero or only a few
packets are lost, and thus, the bandwidth is uniform. Using
Scalable TCP, packets are still lost during the steady state.
It is more likely the target rate estimation misses the mark.
Further, the results shown in Table IV (b) is slightly lower
than the available bandwidth. Thus, the improvement of the
target rate estimation is still an open issue.

2) Microscopic behavior during the slow-start phase: We
further measured the behavior of the bandwidth with a finer
resolution (500 µsec), where we use the fine resolution traffic
monitoring feature of GtrcNET-1. The TailDrop buffer size is
set to 128KB. Figure 7 shows the result during the slow-start
phase , with and without pacing, using Scalable TCP. The
bandwidth is plotted by bar chart, and the cwnd is plotted
by line chart. Without pacing, packet losses occur at about
two seconds after the start. Here, bursty traffic occurs over
the bottleneck link bandwidth, whose peak bandwidth reaches
about 123MB/s, however the average bandwidth during an
RTT period is only about 3MB/s. By performing fast recovery
after a packet loss, cwnd is set to half the size of the cwnd
before the packet loss. And then, the sender state enters the
congestion avoidance phase. With pacing, on the other hand,



TABLE III

SCALABLE TCP: AVERAGE BANDWIDTH AND NUMBER OF TAILDROP

PACKETS

(a) without pacing (b) with pacing
Buffer (KB) BW (MB/s) TailDrops BW (MB/s) TailDrops

64 17.3 3071 56.8 41
128 19.9 2403 55.8 791
256 23.0 1526 57.1 0
512 29.9 2946 57.0 374

TABLE IV

FAST TCP: AVERAGE BANDWIDTH AND NUMBER OF TAILDROP PACKETS

(a) without pacing (b) with pacing
Buffer (KB) BW (MB/s) TailDrops BW (MB/s) TailDrops

64 12.9 1699 54.7 0
128 20.4 1328 54.7 0
256 21.0 1231 54.7 0
512 57.1 0 54.7 0

the traffic is paced under the bottleneck link bandwidth, and
no congestion exists. Thus, cwnd is ten times larger than that
without pacing, and the bandwidth is fifteen times higher. In
addition, when the bandwidth is under about 20MB/s, little
bursty traffic remains because the maximum gap size is set to
64KB.

Figure 8 shows the result during the slow-start phase, with
and without pacing, using FAST TCP. The aggressiveness of
increasing cwnd during the slow-start phase is less than that of
Scalable TCP, because FAST TCP performs burstiness control
at the TCP protocol layer. Without pacing, bursty traffic occurs
over the bottleneck link bandwidth, and this results in packet
losses. With pacing, on the other hand, the traffic is paced
under the bottleneck link bandwidth, and no congestion exists.

3) Microscopic behavior during the congestion avoidance
phase: Figure 9 shows the result during the congestion avoid-
ance phase, with and without pacing, using FAST TCP. With-
out pacing, bursty traffic causes packet losses, and then the
sender periodically shrinks the cwnd before the macroscopic
average bandwidth reaches the bottleneck link bandwidth.
Thus, the inefficient bandwidth utilization result in the poor
performance of the TCP/IP communication. With pacing, on
the other hand, the physical bandwidth of the bottleneck link
is fully utilized, and then the TCP/IP communication achieves
high and stable throughput.

When the TailDrop buffer size is large enough, such as
512KB, as shown in Table IV, packet losses do not occur,
and then the sender state changes to the steady-state. Figure
10 shows the result during the congestion avoidance phase,
where the TailDrop buffer size is set to 512KB. Without
pacing, cwnd is uniform, however the microscopic bandwidth
is sometimes unsteady. There might be three reasons: the
interrupt coalescing of the NIC[14], the delayed ACK, and the
ACK compression phenomenon[15]. These cause an increase
in the amount of packet transmission, and result in small bursty
packet transmissions. Using our proposed software pacing
mechanism, the microscopic bandwidth is quite steady. These
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Fig. 7. Scalable TCP: Bandwidth and congestion window size during the
slow-start phase (buffer size: 128KB)

results also suggest that this is an effective mechanism to
improve TCP/IP communication performance on fast long-
distance networks.

D. Memory Bandwidth Overhead

To transmit a packet, the NIC performs Direct Memory
Access (DMA) to the main memory to copy the packet
body. Such DMA transfers can degrade the performance of
applications, since the DMA access may conflict with memory
accesses from the CPU.

We evaluated the memory bandwidth overhead when the
proposed software pacing mechanism is used, since the NIC
performs DMA not only to transmit real packets, but also to
transmit gap packets. We measured the memory bandwidth
by using a benchmark program called mbench, which simply
does block copies between two 1MB buffers using the memcpy
library function. In addition, GtrcNET-1 emulates a bottleneck
link whose bandwidth and RTT latency are 125MB/s and
200ms, respectively. When mbench is executed, iperf generates
bulk transfers as follows:

1) mbench only
mbench is executed without iperf.

2) socket buffer
The socket buffer size is limited to a maximum of 15MB
so as to limit the Iperf transmission rate to 62.5MB/s.
No software pacing is used here.

3) pacing
Software pacing is used to limit the Iperf transmission
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Fig. 8. FAST TCP: Bandwidth and congestion window size during the slow-
start phase (buffer size: 128KB)

TABLE V

MEMORY BANDWIDTH OVERHEAD WITH PACING

Memory Bandwidth Iperf Throughput
(MB/s) (MB/s)

mbench only 1935.5 -
socket buffer 1236.3 58.38

pacing 1043.0 58.38
full rate 923.0 116.13

rate to 62.5MB/s.
4) full rate

Iperf transmits with no limits (i.e. 125MB/s).

Table V shows the result. Iperf shows almost the same
transmission rate for socket buffer and pacing. However,
the NIC performs DMA to generate gap packets in pacing.
Therefore, the memory bandwidth of pacing is smaller than
that of socket buffer. On the other hand, the NIC performs the
same amount of DMA in pacing and full rate. However, the
memory bandwidth is larger for pacing. This is because the
CPU performs memory copies to send a real packet.

This result shows that the proposed software pacing mech-
anism decreases available memory bandwidth for application
programs, but the decrease is smaller than for the case where
full rate transmission is performed.

IV. RELATED WORK

On TCP/IP communication over fast long-distance net-
works, bursty traffic during the slow-start phase can overrun
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Fig. 9. FAST TCP: Bandwidth during the congestion avoidance phase (buffer
size: 128KB)
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Fig. 10. FAST TCP: Bandwidth during the congestion avoidance phase
(without pacing, buffer size: 512KB)

the buffer of the bottleneck link router with a large number
of packets, hence large packet loss occurs. Limited slow-
start[5] is a modification of the slow-start behavior for use
with TCP connections with large congestion windows. This
requires some sort of a priori knowledge of the bottleneck
link bandwidth. The proposed mechanism does not require a
priori knowledge, because the target rate is estimated from
TCP window control information.

While some NICs have a function to set the IPG size,
the size can not be changed dynamically according to the
previously sent packet size. In addition, such implementation
is dependent on NICs and device drivers. The software-
based approach, on the other hand, controls the timing of



transmission of packets using a software timer, and requires
no additional hardware. Antony et al[17], however, reported
pacing may be hard to implement at the device driver level
since it requires that the operating system maintains a timer
per TCP flow with µsec resolution, which could incur lots of
overhead.

Clusterd Packet Spacing[12][13] controls the transmission
interval between packets during the slow-start phase using a
software timer. In [13], the pseudo software interrupt function
’tasklet’ in Linux is used to implement a high-resolution timer.
Using the tasklet, the timing at which to insert a packet into
the IFQ can be scheduled with 1 µsec accuracy. This approach
divides transmission packets into small portions, but still has
small burstiness. In other words, such an approach cannot
control the transmission rate at a high resolution, and may
cause extra overhead.

V. CONCLUSION

This paper has shown the design and evaluation of precise
software pacing mechanisms: (1) gap packets which adjust
precisely the interval of packets; and (2) IPG-aware packet
scheduling which coordinates the transmission of packets
for each bottleneck link. Experiments in a WAN emulation
environment with one bottleneck link show that gap packets
can precisely control IPG to the target rate, and TCP/IP
communication performance using Scalable TCP, as well as
FAST TCP, is improved. As a result of this experiment,
we have shown that precise software pacing can be realized
without any special hardware, and without Linux kernel re-
compilation.

Towards practical use of this work, an adaptation to various
network topologies is more important. In this paper, we
presented experimental results in a simple network setting
which has a single bottleneck link. We plan to evaluate and
discuss details of an IPG-aware packet scheduling algorithm
on a multiple bottleneck link network.
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